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The family of homodimeric nitric oxide synthases (NOS I—111) catalyzes the generation of the
cellular messenger nitric oxide (NO) by oxidation of the substrate L-arginine. The rational design
of specific NOS inhibitors is of therapeutic interest in regulating pathological NO levels
associated with sepsis, inflammatory, and neurodegenerative diseases. The cofactor (6R)-5,6,7,8-
tetrahydrobiopterin (H4Bip) maximally activates all NOSs and stabilizes enzyme quaternary
structure by promoting and stabilizing dimerization. Here, we describe the synthesis and three-
dimensional (3D) quantitative structure—activity relationship (QSAR) analysis of 65 novel
4-amino- and 4-oxo-pteridines (antipterins) as inhibitors targeting the H;Bip binding site of
the neuronal NOS isoform (NOS-1). The experimental binding modes for two inhibitors
complexed with the related endothelial NO synthase (NOS-I11) reveal requirements of biological
affinity and form the basis for ligand alignment. Different alignment rules were derived by
building other compounds accordingly using manual superposition or a genetic algorithm for
flexible superposition. Those alignments led to 3D-QSAR models (comparative molecular field
analysis (CoMFA) and comparative molecular similarity index analysis (CoMSIA)), which were
validated using leave-one-out cross-validation, multiple analyses with two and five randomly
chosen cross-validation groups, perturbation of biological activities by randomization or
progressive scrambling, and external prediction. An iterative realignment procedure based on
rigid field fit was used to improve the consistency of the resulting partial least squares models.
This led to consistent and highly predictive 3D-QSAR models with good correlation coefficients
for both CoMFA and CoMSIA, which correspond to experimentally determined NOS-II and
-111 H4Bip binding site topologies as well as to the NOS-1 homology model binding site in terms
of steric, electrostatic, and hydrophobic complementarity. These models provide clear guidelines

and accurate activity predictions for novel NOS-I inhibitors.

1. Introduction

Nitric oxide synthases (NOS?) are the only heme-
containing enzymes that require (6R)-5,6,7,8-tetrahy-
drobiopterin (H4Bip) as cofactor for maximal activation.
All three known isoforms? catalyze oxidation from the
substrate L-arginine® to L-citrulline and nitric oxide
(NO) or a related N-oxide.* NO is an important modula-
tor of physiological and pathophysiological function in
the cardiovascular, neuronal, and immune system,>6
and it is involved as an intercellular signal and defen-
sive cytotoxin in the nervous, muscular, cardiovascular,
and immune systems.> While the neuronal NOS (NOS-
1) and endothelial NOS (NOS-111) isoforms produce low
NO concentrations, the cytokine inducible NOS (NOS-
I1) is a high-output system that synthesizes larger NO
concentrations to counter pathogens and coordinate
T-cell responses. The native enzyme is homodimeric;
each subunit contains a catalytic N-terminal oxygenase
domain (residues 1—498) and a C-terminal electron-
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supplying reductase domain (residues 531—1144). The
oxygenase domain binds heme, H4Bip, and L-arginine.”8
Dimerization and H4Bip binding are essential for cata-
lytic activity. Interestingly, only the fully reduced form
of H4Bip can support NO production.® The binding of
calmodulin to NOS promotes electron flow from the
reductase to the oxygenase domain.0

Although similar in their catalytic mechanism, the
NOS isoforms are distinguished by their regulation and
localization. The neuronal (NOS-1) and endothelial
(NOS-I111) isoforms are present constitutively; they are
dependent on elevated free intracellular Ca%* concen-
trations to interact with calmodulin. NOS-1 is localized
in neuronal tissue,!! skeletal muscle, and epithelial
cells and modulates neurotransmission, gastrointestinal
motility, penile erection, etc.%° Experiments using NOS-1
knockout mice and the NOS-I selective inhibitor 7-
nitroindazole!? indicate a role for NOS-I in stroke,!3
Parkinson’s disease,’* and pain.’®> NOS-111, found in
vascular endothelial cells!® regulating blood pressure
and hemostasis, is not a therapeutic target for phar-
macological intervention given its role in maintaining
blood flow. The inducible isoform (NOS-I11) is expressed
in macrophages and other cells upon exposure to cyto-
kines and plays a key role in early immune responses
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as a cytotoxic agent!”18 against bacteria, viruses, and
other pathogens. Its activity does not depend on eleva-
tions in the free intracellular Ca2*, since it already binds
calmodulin at Ca?* levels of resting cells. Overexpres-
sion of NOS-11 has been associated with tissue damage
and severe hypotension in disease states such as sepsis.

Comparing human NOS genes reveals an isoform
sequence homology of 50%, suggesting that they may
differ from each other in regulatory aspects.’® X-ray
structures for dimeric NOS-117 and NOS-1118 reveal
structurally conserved HBip binding sites,?® which
differ from the corresponding binding sites in mono-
meric X-ray structures?! and thus explain the need for
dimerization for activity. Both binding sites in dimeric
X-ray structures were identical, no preferential binding
of H4Bip was reported.? In this study, these dimeric
X-ray structures were used for homology modeling of
NOS-I. This homology model was used only for valida-
tion of the consistency of the ligand-derived three-
dimensional (3D) quantitative structure—activity rela-
tionship (QSAR) models by interpretation in combination
with binding site requirements, as the lack of a NOS-I
X-ray structure requires a ligand-based approach to
understand structural requirements for NOS inhibition
rather than a structure-based approach.

The rational design of isoform specific NOS inhibitors
is of great pharmacological interest to reduce pathologi-
cally elevated NO synthesis implicated in disease states
such as sepsis,?? inflammation, and neurodegeneration
stroke.! Prototypical NOS inhibitors were analogues of
L-arginine,? e.g., N®-methyl-L-arginine (L-NMAZ24), N®-
methyl-L-argininemethylester (L-NMMA), N@-nitro-L-
arginine (L-NNA2), N°-iminoethyl-L-orthinine (L-N102%),
and Ne-nitro-L-arginine-containing dipeptide amides.?’
They show minimal isoform selectivity except for dipep-
tide amides, and more recently, some peptidomimetics?8
interfere with other arginine-based biological pathways.
Although L-citrulline does regulate NOS activity, ana-
logues of L-citrulline, e.g., L-thiocitrulline (L-TC), L-homo-
thiocitrulline (L-HTC), and S-methyl-L-thiocitrulline
(L-SMTC),2® are potent inhibitors.3® These compounds
compete with L-arginine and show a favorable toxicity
profile'®1! in animal models. In addition, nonpeptide
inhibitors with variable isoform selectivity were de-
scribed.3132 Other binding sites have also been tar-
geted,3%33 including those associated with flavins, heme,
and calmodulin binding.

Our previous work on NOS-I inhibitors led to a class
specifically targeting the H4Bip binding site (anti-
pterins).34~36 Two chemical series based on a 4-amino-
3435 or 4-oxo-pteridine scaffold3® were systematically
varied at the 2-, 4-, 5-, 6-, and 7-positions to derive a
SAR. In the present study, a set of 65 4-oxo and 4-amino
pteridines was analyzed using 3D-QSAR techniques to
derive predictive models for further inhibitor design.
The lack of a NOS-I X-ray structure prompted us for a
ligand-based design and analysis approach using 3D-
QSAR to obtain information directed toward design of
novel analogues. The known X-ray structures of related
NOS isoforms”® were used to derive an alignment
hypothesis for 3D-QSAR using two of our inhibitors in
their experimental binding mode from NOS-II1 X-ray
structures.®® The ligand-based approach was carefully
validated and checked for internal consistency; hence,
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chemical interpretations are significant and justified.
The homology model of NOS-I, however, was used to
support the initial alignment hypothesis and to inter-
pret ligand-derived requirements for NOS-I affinity
from 3D-QSAR studies, providing a structural basis that
accounts for key ligand—enzyme interactions. It pro-
vides a consistency check for chemical interpretation,
while the QSAR model itself is based only on structural
information present in the set of NOS-I inhibitors.

To establish the SAR of these inhibitors, different
ligand-based 3D-QSAR methods were employed. Com-
parative molecular field analysis (CoMFA)3—3° and
comparative molecular similarity index analysis (CoM-
SIA)*0 were used to correlate molecular property fields
of aligned inhibitors to NOS-I biological activities using
the PLS method (partial least squares).*! Cross-valida-
tion*2 was used to check for consistency and predictive-
ness. An iterative realignment procedure based on rigid
field fit to average CoMFA fields was used to improve
the consistency of PLS models. The resulting contour
maps from 3D-QSAR models enhance our understand-
ing of electrostatic, hydrophobic, and steric require-
ments for ligand binding and provide a guide for the
design of novel pteridine-based NOS inhibitors to those
regions, where structural variations altering steric or
electrostatic fields reveal a significant correlation to
biological properties.

2. Methods

2.1. Chemistry. All 65 compounds used for the 3D-
QSAR analyses were synthesized using procedures
previously described or given in the Experimental
Section. The data set is well-balanced and contains
different chemical functionalities. All chemical struc-
tures and biological activities are listed in Table 1. The
best I1Cso value is significant for targeting the H.Bip
binding site, while the split of 2 orders of magnitude is
relevant to draw significant conclusions from this QSAR
study.

2.2. Computational Procedure. 2.2.1. General
Procedure. All modeling studies were performed using
the program SYBYL? on Silicon Graphics workstations.
A number of procedures were automated using SPL
(Sybyl Programming Language). Energy calculations
were based on the TRIPOS 6.0 force field* with
Gasteiger—Marsili charges.*® Ligands and protein—
ligand complexes were minimized using the quasi-
Newton—Raphson (BFGS) procedure. Ligand geom-
etries were optimized using MOPAC 6.0 and the AM1
Hamiltonian,*” which yields atomic partial charges for
computing electrostatic fields.

For homology modeling and docking of reference
compounds, the X-ray structures of endothelial and
inducible NOS isoforms (NOS-11, NOS-111)78 were ob-
tained from the protein data bank (PDB).*8 All hydrogen
atoms were added, while conserved structural water and
a glycerol molecule close to the H4Bip site were deleted.
Protein structures were aligned using the Ca atoms of
related amino acids around the H4Bip binding site plus
selected heavy atoms from heme and H4Bip frameworks.

After analysis of protein—ligand interactions using
the program GRID,*® some reference molecules were
manually docked into the H4Bip binding site. Then, the
resulting complex was minimized while treating all
protein residues within a sphere of 4 A around the
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Table 1. Sixty-Five 4-Oxo and Four Amino-pteridines as NOS-I Inhibitors Used in This Study
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ligand as flexible. Convergence criteria were set to 0.001
kcal/A. Some related compounds were built accordingly,
docked into the NOS-111 H4Bip binding site, and mini-
mized using such a partially flexible receptor. However,
the resulting binding modes were only used qualita-
tively, while 3D-QSAR results using the ligand-based
approach described below were applied to obtain de-
tailed insights into the SAR of this chemical series.

The program MOLCAD®® was used to visualize pro-
tein—ligand interactions by mapping properties such as
lipophilicity®52 and electrostatic potential (obtained
using the Poisson—Boltzmann equation®3) onto solvent
accessible surfaces.>* The step width for the grid to
compute the Poisson—Boltzmann electrostatic potential
was set to 1 A, while the border width of the solvent
grid around the molecule was set to 8 A. Dielectric
constants of 80 for the solvent and 2 for the solute were
used. The electrostatic potential at the boundary was
computed using the Debye—Huckel equation.

2.2.2. Homology Modeling. A homology model for
NOS-I was generated to obtain more information about
H4Bip binding site differences using the program Com-
poser.®® The structures of dimeric NOS-111 and NOS-11
(PDB codes 1nod, 2nod, 3nod, 1nse, 3nse, 4nse’8) served
as input homologue sequences. For loop searching, the
Sybyl 6.5 binary version of the PDB database with 1495
nonredundant protein structures was used. A multiple
alignment on homologous sequences was generated, and
identities across all sequences were assigned weights
proportional to the square of their percentage sequence
identity to the model sequence. The weights determine
the relative contribution of each homologue to the
framework on which the model was built.>® Then, a
structural alignment of their 3D structures using seed
residues as starting points was performed, leading to
the determination of structurally conserved regions
(SCRs). The unknown sequence (human brain NOS-I,
GenBank accession code L02881) was aligned with the
SCRs to determine the location of the SCRs in the target
sequence and the homologue to use in constructing the
backbone of each SCR in the final model. This led to a
model of the SCRs of the target protein. A fragment
from one of the homologues was used to model the
backbone of each SCR, while a rule-based procedure was
employed to model side chains. Finally, the structurally
variable regions of the target protein were constructed
by selecting a fragment to model each loop region either
from the corresponding location in a homologous protein
or from the entire protein database. The final NOS-I
monomer was checked for steric overlap, superimposed
onto other isoforms, and completed by adding heme, H;-
Bip, and another NOS-I monomer according to the NOS-
111 and NOS-I1 dimerization pattern. Finally, the H4Bip/
NOS-I dimer model was minimized treating HjBip,
heme, and all binding site residues within a sphere of
4 A as flexible.

2.2.3. Alignment as Basis of 3D-QSAR. Three
different alignment rules were used for 3D-QSAR stud-
ies of this set of 65 NOS-I inhibitors. The first alignment
(A) was based on an atom-based rmsd fit using the
pteridine scaffold. This was found a reasonable ap-
proach, as X-ray structure data3® of the related isoform
NOS-II1 in complex with the herein used inhibitors 32
and 185% revealed a common orientation of the 4-0x0%®
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and 4-amino® series. Interestingly, the oxygen and
nitrogen atoms at C4 and C2 of the bicyclic scaffold
adopt similar orientations; they are involved in similar
direct or water-mediated hydrogen-bonding interactions
to the NOS-III binding site (Figure 1A). All other
inhibitors were manually built analogous to X-ray
structures in the Cambridge crystallographic database
(CSD)57 and by systematic searching to identify mini-
mum conformations. Dihedral angles without CSD entry
were adjusted using canonical rules. Finally, all com-
pounds were optimized with MOPAC 6.0%47 and su-
perimposed onto the pteridine framework, producing
alignment Al.

Alignment B was obtained using GASP,%8 a genetic
algorithm for flexible molecular overlay. Its fitness
function is a weighted combination of the number and
similarities of superimposed features, the overlay vol-
ume integral plus internal van der Waals energies.
Except for a maximum of 300 000 GA operations,
default parameters were utilized. Several superpositions
were generated using either compound 303 from the
substituted 4-amino series or HyBip as rigid template
and compounds 185, 187, 261, and 341 as flexible
candidates. The 10 models with the best fitness function
from each run of the GA were analyzed. They all had
in common that the bicyclic scaffold of substituted
4-amino compounds was shifted relative to the 4-oxo and
unsubstituted 4-amino scaffolds (Figure 1). All remain-
ing molecules were superimposed using an atom-based
rmsd fit of the bicyclic scaffold for individual series,
leading to alignment B1.

After initial PLS analyses for alignments Al and B1,
an iterative realignment procedure was applied to
compounds with high absolute residuals to improve the
consistency of 3D-QSAR models. As steric CoMFA
interaction energies are usually computed using a
Lennard—Jones 6—12 potential with a steep increase
in energy at short distances, significant energy differ-
ences are observed at individual grid points comparing
two molecules, which are not perfectly aligned. To
account for this situation, a rigid-body field fit was
applied for realigning molecules with absolute residuals
>0.5. Any new orientation was accepted, if the predic-
tion of the biological activity was improved. A rigid-body
field fit minimizes the rms differences in the sum of
steric and electrostatic interaction energies between a
compound and a template field with respect to six rigid-
body degrees of freedom.3” Here, the averaged steric and
electrostatic fields for all molecules were used. This
procedure, related to another approach,>® improves the
statistical quality of the initial PLS model significantly,
while it requires careful validation. This realignment
followed by another PLS analysis was applied three
times starting from the PLS results of alignment Al
producing alignments and analyses A2, A3, and A4. The
same procedure applied to alignment B1, which pro-
duced B2, B3, and B4, respectively.

Alignment C1 was obtained using a flexible field fit38
of all molecules in alignment Al onto their averaged
steric and electrostatic fields. The flexible fit uses field
fit penalty terms Eg; and Eef for steric and electrostatic
potentials, respectively, added to the Tripos 6.0 force
field.** A careful balance of those terms is crucial to
avoid geometries with high residual strain. Thus, a
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Figure 1. (A) X-ray structure-based alignment for 32 (4-oxo series: white carbons, dark water) and 185 (4-amino: gray carbons,
gray water) in complex with NOS-I11. (B) Best GASP alignment for 4-amino, 4-oxo, and substituted 4-amino series using 303 as
rigid template and 185, 187, 261, and 341 for flexible overlay. Pharmacophoric interaction sites are indicated by black circles. (C)
Best GASP alignment using HiBip as rigid template, omitting 303 from the overlay set. (D) Best GASP alignment using H.Bip

as rigid template, including 303.

moderate force constant of 0.5 kcal/mol was applied.
Similar weights were assigned to all grid points, al-
though improved results with individual weighting were
reported.’° Subsequently, applying the rigid realign-
ment procedure produced alignments C2 and C3. Fi-
nally, an unconstrained energy minimization was used
to relax every molecule from internal strain, producing
alignment C4.

For each of those 12 individual alignments from three
different classes, a CoMFA model and two CoMSIA
models were generated, with and without hydrophobic
field contributions. Each model was subjected to exten-
sive statistical validations given below.

2.2.4. 3D-QSAR Studies. Steric and electrostatic
interaction energies between a probe atom and aligned
molecules are calculated at predefined grid points using
a volume-dependent lattice with 2 A spacing, a posi-
tively charged carbon atom, and a distance-dependent
dielectric constant. The magnitude of the regions was
defined to extend the conformers by 4.0 A along the
principal axes. Maximum field values were truncated
to 30 kcal/mol for steric and +30 kcal/mol for electro-
static energies. For points “inside” a molecule (steric
energy of 30 kcal/mol), no electrostatic energy was
computed. Those values were set to the mean of the
related column.

This alignment served to compute steric, electrostatic,
and hydrophobic similarity index fields for COMSIA. The

latter field description is based on Crippen’s partial
atomic hydrophobicities.52 The advantage of CoMSIA
fields is that no singularities occur at atomic positions
due to a Gaussian type distance dependence of the
physicochemical properties; thus, no arbitrary cutoffs
are required. Similarity indices®! were computed using
a probe with charge +1, a radius of +1, a hydrophobicity
of +1, and 0.3 as attenuation factor a for the Gaussian
type distance dependence.

Equal weights for CoMFA or CoMSIA fields were
assigned using the COMFA STD scaling option.5? En-
zyme inhibition is expressed as log(1/1Cs0-100 000).
Cross-validated analyses were run using the leave-one-
out method in SAMPLS®2 or two and five cross-valida-
tion groups with random selection of group members.
PLS analyses using two or five randomly selected cross-
validation groups were averaged over 100 runs. For
CoMFA, columns with a variance smaller than 2.0 were
excluded prior to the PLS analysis (minimum-go). The
overall quality of all PLS analyses was expressed using
the cross-validated r? value r2(cv).

For additional validation, all biological activities were
randomized® 100 times and subjected to PLS analysis,
and the mean cross-validated r? was calculated. As
simple randomization of activities could be misleading,
if there is appreciable redundancy in the data set,
progressive scrambling® was used as an alternative
randomization technique as well. This y-block perturba-
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Figure 2. (A) Superposition of NOS-111 inhibitor binding sites for 32 (white carbons) and 185 (orange carbons). Purple residues
indicate the first NOS-111 monomer, while green residues indicate the second monomer, showing that the binding site is located
at the interface of both monomeric subunits. Both inhibitors are buried in the interior; they are oriented proximal and perpendicular
to a heme. (B) Structural comparison of three NOS isoforms with the inhibitor 185. The NOS-11l binding site (PDB: 1nse) is
shown in purple, NOS-II residues (PDB: 2nod) are shown in orange, and residues for the NOS-1 homology model are displayed
in green. Residue numbering is taken from NOS-I11; differences to NOS-11 and NOS-I are indicated.

tion strategy first subdivided biological activities into
2—12 subgroups of similar ranges. Subsequently, the
biological activities were randomized only within a
subgroup, while the relation between individual sub-
groups remained unaffected. Thus, the stability of each
obtained regression model could be directly tested.
Having 12 subgroups, only a small, local perturbation
of biological activities was probed, while for two sub-
groups, a much larger portion of the data set is random-
ized. This method provides information about the
structure of the y-block, indicates inconsistencies, and
helps to estimate the tolerable error in biological activi-
ties for any PLS model. For analysis, the number of
subgroups was plotted on the x-axis against the mean
cross-validated r? value per submodel (20 randomiza-
tions each) on the y-axis.

3. Results

3.1. Binding Mode of Pterin-Based Derivatives.
The experimental alignment of the 4-oxo and 4-amino
series in complex with NOS-11136 as basis for alignment
Al is displayed in Figure 1A. The 4-amino inhibitor
185% is shown with white carbons and black water
molecules, while 3236 from the 4-oxo series is shown
with gray carbons and gray water molecules. This
alignment is based on H4Bip binding site residues. Both
ligands share a common orientation of the bicyclic
framework, while the attached heteroatoms are involved
in direct or water-mediated hydrogen bonds to the
binding site. The inhibitors are deeply buried in the
interior of the cavity and not accessible to bulk solvent,
and they are oriented proximal and perpendicular to
the heme molecule. In Figure 2A, both NOS-I11 X-ray
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Figure 3. Connolly surface for NOS-I1 H,Bip binding cavity based on the NOS-II X-ray structure (PDB file: 1nse) and best
docking modes for the 10 most active NOS-I inhibitors. Different properties are mapped onto this surface using MOLCAD. (A)
Lipophilic potential (brown, lipophilic; green, intermediate range; blue, hydrophilic). (B) Electrostatic potential based on Poisson—

Boltzmann equation (red, negative; blue, positive).

structures with 185 and 32 are shown with purple
residues for the first NOS monomer and green for the
second, respectively. The main protein—ligand interac-
tion occurs between the aromatic rings in both the
inhibitors and the Trp449 indole. Both rings are stacked
with a 3.6 A distance, a motif present in other pterin—
protein complexes.®® The hydrogen-bonding pattern
corresponds to HsBip bound to NOS-11 and NOS-111.78
The 4-amino-5,6,7,8-tetrahydropteridine is hydrogen-
bonded to a heme carboxylate (O4/N4 via solvent, N3
directly), while the next potential partner for N5, a
water molecule, is within a 4.1 A distance. The struc-
turally conserved water between the C4 substituent and
the heme carboxylate is located at the same position,
suggesting a similar hydrogen bond interaction. The
carbamate carbonyl oxygen of 32 is hydrogen-bonded
to Arg367 guanidine, while for 185 this group points
toward the 4-amino function but does not provide an
optimal geometry for interaction. For the NOS-11 mono-
mer, this part is disordered, explaining that only dimeric
NOS with properly oriented Arg367 is able to bind Hy-
Bip. The entrance region into the H,4Bip binding region
is occupied by a glycerol molecule, while structural
water molecules are displayed as spheres. The 2-amino-
nitrogen in all molecules interacts via solvent with the
heme carboxylate and with the backbone carbonyl group
of Trp449, while nitrogen N1 in 185 and 32 is not
involved in any hydrogen bond interaction but close to
Trp449-CoH (2.14 A). Finally, N8 is in close hydrogen-
bonding contact to the carbonyl group of Ala448. The
185 hydrophobic phenyl side chain attached to C6
occupies a pocket formed by the side chains of Val106,
TrpB447, TrpB076, and other backbone amide bonds,
while this space is not occupied in the 32/NOS-III
complex. Val106 is replaced by Met for NOS-11 and also
NOS-I. This pocket is also occupied by the H;Bip
dihydroxypropyl chain, which also interacts with the
Ser104 carbonyl oxygen and thus orients the cofactor
within the binding site. This extended hydrogen-bonding
network explains the high affinity of this cofactor (Kq
20 NM®7),

A structural comparison of all three isoforms is shown
in Figure 2B with the potent NOS-I inhibitor 185. The

NOS-I111 binding site (PDB file 1nse) is shown in purple,
NOS-II residues (PDB file 2nod) are shown in orange,
and residues for the NOS-1 homology model are dis-
played in green. Residue numbering is taken from NOS-
I11. This comparison reveals two sequence differences
for this inhibitor binding site: Vall06/Met/Met and
Alal48/lle/Val (NOS-111/11/1). This suggests that experi-
mental binding modes from other isoforms provide
reasonable models for NOS-I binding.

Three similar alignments of the 4-amino, 4-oxo, and
N-substituted 4-amino series generated using the pro-
gram GASP are given in Figure 1B—D. The superposi-
tion in Figure 1B was generated using 303 from the
4-amino series as a rigid template and 185, 187, 261,
and 341 as candidates for flexible overlay. In general,
the 10 best alignments from this and all other runs are
very similar. Interestingly, substituted 4-amino com-
pounds are not directly superimposed onto the 4-oxo and
unsubstituted 4-amino scaffold. Black circles in Figure
1B—D indicate common pharmacophoric interaction
sites (donor sites, acceptor sites, or hydrophobic regions)
for each model. The superposition in Figure 1C was
generated using H4Bip as a rigid template, and 303 was
omitted, leading to a direct superposition of all remain-
ing molecules. One additional pharmacophoric interac-
tion site in the area left to the N3 nitrogen is observed,
while the hydrophobic interaction site of the substitu-
ents at C6 is missing. The final alignment was again
based on H4Bip as the template, but now including 303,
again showing the slight shift in the alignment of
substituted 4-amino compounds. On the basis of these
alignments, all remaining molecules were superimposed
using heavy atom-based rmsd fitting of the bicyclic
scaffold of corresponding series, leading to alignment
B1.

Furthermore, 10 inhibitors were docked into the NOS-
Il binding site after manually orienting the bicyclic
scaffold, which seems reasonable given the high struc-
tural similarity between different isoforms (Figure 2B).
All residues and heme in a radius of 4 A around ligands
were treated flexible during minimization. The align-
ment after optimizing protein—ligand interactions for
those 10 molecules is shown in Figure 3, supporting the
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Figure 4. Superposition of 65 NOS-I inhibitors after iterative
realignment used to derive the final PLS model C3 discussed
for chemical interpretation.

atom-based alignment Al. These docking results also
reveal that bulky substituents at C4 are unfavorable
for the water-mediated hydrogen bond to one heme
carboxylate. The NOS-I11 protein cavity with all super-
imposed inhibitors is shown in Figure 3 with its lipo-
philic potential (panel A: brown, lipophilic; green,
intermediate range; blue, hydrophilic) and its electro-
static potential based on the Poisson—Boltzmann equa-
tion (panel B: red, negative; blue, positive) mapped onto
the Connolly surface.

3.2. 3D-QSAR Analysis Using CoMFA. The super-
position of all NOS-I inhibitors after iterative realign-
ment is shown in Figure 4 for model C3, while super-
positions for A4 and B4 are given in the Supporting
Information, respectively. All 3D-QSAR models were
based on log(1/1Cs0-100 000) as the dependent variable,
MOPAC AML1 charges, and a grid spacing of 2 A, leading
to 2431 X-block columns per interaction field. The
resulting PLS models using CoMFA or CoMSIA show a
high degree of internal consistency. The CoMFA statis-
tical results based on all three alignments A—C are
summarized in the Supporting Information. For all 12
models, four significant components after PLS analysis
were sufficient. For the atom-based alignment Al, a
CoMFA model with an r?(cv) value of 0.480 for four
relevant PLS components and a conventional r2 of 0.776
were obtained. The internal model consistency was
improved using the iterative realignment procedure
(keyword “rig-ffitl” in Supporting Information). After
three realignments using the average steric and elec-
trostatic fields from the previous PLS model, r?(cv)
values of 0.517, 0.538, and finally 0.575 were observed,
respectively, while the conventional r? values for these
models were 0.844, 0.865, and finally 0.885. All four PLS
models resulted in a similar chemical interpretation,
when analyzing CoMFA SD*Coeff maps. They show
between 62 and 68% steric field contributions, while the
importance of electrostatic interactions for predictive
models is only 33—38%.

For alignment B1 based on GASP, an initial COMFA
model with an r?(cv) value of 0.511 and a conventional
r2 of 0.830 was obtained. Also for this model, the
internal consistency was improved using iterative re-
alignment (Table S1 of Supporting Information). Three
realignment steps were based on average steric and
electrostatic fields, resulting in PLS models with higher
predictive power and r2(cv) values of 0.584, 0.691, and
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finally 0.749, while conventional r? values of 0.830,
0.897, and 0.928 were obtained.

For alignment C1 resulting from flexible field fit using
Al, a CoMFA model with an r2(cv) value of 0.618 and a
conventional r2 of 0.879 resulted. After two rigid field
fit realignment steps were applied, models with im-
proved statistical properties with r?(cv) values of 0.645
and 0.698 were found (conventional r2: 0.897 and 0.916),
while the energy minimization of alignment C3 (Figure
4) to C4 resulted in a model with a r?(cv) of 0.574 and
a conventional r? of 0.879.

As any approach to improve the internal consistency
of PLS models by realignment might result in overfit-
ting, more rigorous validation was applied to support
the statistical quality and predictive power of all 12
QSAR models. For each model reported in Table S1 of
the Supporting Information, 300 validation runs were
analyzed as follows: 100 with randomized activities, 100
with two, and 100 with five randomly assigned cross-
validation groups. First, biological activities were ran-
domly assigned®* to molecules and subjected to leave-
one-out PLS analysis. The mean r?(cv) value for 100
randomizations is reported in Table S2 (Supporting
Information) in columns Rand100 and SD(Rand100). All
models show mean r2(cv) values lower than —0.130; no
model was obtained with more than two PLS compo-
nents, thus supporting the finding that PLS models
from Table S1 are significantly better than random
models based on the same alignment.

Progressive scrambling® was applied to test PLS
model stability against small perturbations of the y-
block. After biological activities were subdivided into
2—12 subgroups, these activities within a subgroup
were randomized, while the relationship between sub-
groups remained unaffected. Using 12 subgroups only,
a small perturbation was probed, while for two sub-
groups, a much larger portion of the y-block was
randomized. The progressive scrambling results were
given in the Supporting Information, while the mean
cross-validated r2 averaged over 20 individual random-
izations per alignment and the subgroup was plotted
vs the number of subgroups per alignment in Figure 5.
With only one subgroup, the results were similar to
randomization; negative r2(cv) values are observed. The
increase of the mean r2(cv) with more subgroups is
obvious from Figure 5A—C.

In general, r2(cv) values for alignment Al are lower
than for A2—A4, showing that rigid field fit increases
the consistency of the data set. Interestingly, a subdivi-
sion into three subgroups produced stable PLS models
and reasonable mean r2(cv) values for all 12 alignments.
For alignments B and C (Figure 5B,C), the mean r2(cv)
per subgroup does not correlate to rigid fitting align-
ment order, while no model after realignment has a
decreased error tolerance as an indicator of overfitting.

The interpretation of related plots aids in understand-
ing the effect of biological errors on PLS predictions and
provides an estimate of model stability. If any alignment
led to overfitting of biological data regardless of accept-
able leave-one-out r2(cv) values, this becomes obvious;
as increased perturbations in biological data should
have a dramatic effect on the mean r2(cv) values, any
correlation should disappear. Hence, plotting of mean
r2(cv) values for increased perturbation over related
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Figure 5. Results from progressive scrambling for PLS
models from different alignments. The mean r?(cv), averaged
over 20 randomizations per alignment, is plotted vs the
number of subgroups: (A) alignments A1—4, (B) alignments
B1—4, and (C) alignments C1—4.

alignments shows that derived models do not become
more dependent on the biological data. Thus, the applied
iterative realignment procedure does not artificially
increase the internal data set consistency by overfitting,
while decreasing the error tolerance.

Although cross-validation estimates the predictive
power of a PLS model, leave-one-out produces over-
optimistic r?(cv) values. Hence, additional PLS analyses
were done using two and five randomly chosen cross-
validation groups. Because of random formation of cross-
validation groups, each analysis for a particular align-
ment was repeated 100 times, and statistical results are
reported in Table S2 in columns g2(2CV), SD(2CV) for
two and g2(5CV), SD(5CV) for five cross-validation
groups. All derived mean r?(cv) values count for stable
and significant PLS models for each alignment. Two
cross-validation groups produce a lower r2(cv) value, as
a larger portion of each data set (50%) is assigned to a
test group each time for prediction of activity. From the
distribution of 100 individual r2(cv) values per model,
it is obvious that some analyses with low r?(cv) values
are indicating some inconsistency in these data set and
alignment. However, each realignment step consistently
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produced increased averaged r2(cv) values and lower
standard deviations, thus revealing that statistical
significance and model predictivity could be improved
using this realignment strategy. In general, the cross-
validated r?(cv) values using five groups were only
slightly lower than those obtained using the leave-one-
out method, and they also show a low standard devia-
tion. From inspecting those parameters, the model C3
was chosen for chemical interpretation, as it was stable
and reliable for further design.

3.3. 3D-QSAR Analysis Using CoMSIA. As the
realignment was based on CoMFA, CoMSIA as an
alternative descriptor was evaluated. COMSIA statisti-
cal results based on alignments A—C are summarized
in Table S3 (Supporting Information) using only steric
and electrostatic similarity index fields (SE, upper part
of Table S3) or steric, electrostatic, and hydrophobic
fields (SEH, lower part of Table S3). The addition of the
hydrophobic field led to improved r2(cv) values; for all
12 models, four component models were obtained. For
the atom-based alignment Al, a CoMSIA model with
an r2(cv) value of 0.449 for four relevant PLS compo-
nents and a conventional r2 of 0.765 was obtained, in
the same range than obtained for COMFA, while im-
proved as compared to the steric and electrostatic
CoMSIA analysis. However, the internal consistency of
this model was only slightly improved after realignment,
which is in agreement with a lower dependency of
CoMSIA fields to cutoff effects. For alignments A2—4,
ré(cv) values of 0.429, 0.443, and 0.453 were observed,
while all models lead to similar chemical interpretation.
The hydrophobic field contributes 40—48% to these
models, while the electrostatic and steric fields show a
30—41 and 19—22% contribution, respectively, suggest-
ing that CoMFA steric fields are a careful balance
between steric and hydrophobic effects.

For alignment B1, a CoMSIA model with an r2(cv)
value of 0.479 for four PLS components and a conven-
tional r2 of 0.774 was obtained. The realignment pro-
duces r?(cv) values of 0.499, 0.560, and 0.641 for B2—4,
respectively, while conventional r? values of 0.787,
0.820, and 0.865 were found. Finally, alignment C1 led
to a model with an r?(cv) value of 0.536 and a conven-
tional r2 of 0.801, while after realignment r2(cv) values
of 0.547, 0.549, and 0.543 for C2—4 were obtained.

For model validation of all alignments, similar ap-
proaches than those described for COMFA were applied
to the CoMSIA models based on steric, electrostatic, and
hydrophobic fields; all results are summarized in Table
S4 (Supporting Information). Repeated randomizations
of biological activities led to mean r?(cv) values lower
than —0.120 for all models, thus demonstrating the
significance of all models.

Additional PLS analyses were run 100 times for each
alignment using two and five randomly chosen cross-
validation groups. Statistical results are reported in
Table S4 in columns g2(2CV), SD(2CV) for two and
g2(5CV), SD(5CV) for five cross-validation groups. As
for CoMFA, all derived mean r2(cv) values count for
stable and significant PLS models. Again, B4 is the best
CoMSIA model, while only for alignment B, the realign-
ment produces increased r?(cv) values and lower stan-
dard deviations after averaging over r2(cv) values,
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showing that this procedure led to improved significance
and predictivity.

3.4. 3D-QSAR Model Validation Approaches. The
final 3D-QSAR models were subjected to further valida-
tion to evaluate their predictivity and stability with
respect to parametrization, different probe atoms for
computing molecular fields, and influence of ligand
alignment perturbations and conformational energies.
First, the influence of increasing information in X-space
on predictivity of the final COMFA and CoMSIA models
was assessed.®® The chosen approach is based on
progressively dividing the set of compounds into train-
ing and test sets using statistical design toward a
rigorous evaluation of the QSAR models’ external
prediction capabilities. Representative training sets
with increasing populations of 20—62 molecules in
increments of two compounds were selected using a
maximum dissimilarity algorithm®70 and 2D finger-
prints, as described earlier.®® For each subset, a leave-
one-out PLS analysis served to extract the r2(cv) for the
optimal number of components, followed by a PLS
analysis without cross-validation. This noncross-vali-
dated model is applied for predicting the test set,
resulting in a predictive r2 value for each submodel. The
dependency of this predictive r? value vs the population
and diversity of each submodel can be used to evaluate
its predictivity toward external prediction sets. This
approach also allows to estimate a confidence interval
for reliable prediction in terms of structural similarity
of novel candidates to the training data set, for which
an affinity prediction is expected reliable guidelines for
a chemical optimization program.

The r? values for both COMFA and CoMSIA models
C3 are plotted in Figure 6 vs the number of compounds
in each training set. For COMFA, the r?(cv) value is low
with less than 40 compounds in the training set (Figure
6A). Although the conventional r? is high, the predic-
tivity is not sufficient. The mean Tanimoto coefficient
for this training set is 0.76, while the most similar
compounds show a Tanimoto coefficient of 0.85. For 40
compounds in the training set, a predictive model with
a cross-validated r? of 0.483 and a predictive r? of 0.661
results.

When increasing the subset size to more than 46
compounds, the cross-validated r? reaches values be-
tween 0.55 and 0.68. Correspondingly, predictive r?
values larger than 0.67 are obtained, which indicate
stable PLS models with good predictive capabilities.
This demonstrates that a reliable affinity prediction can
be expected for candidates with a larger similarity than
this maximum Tanimoto threshold of ~0.85. The degree
of extrapolation increases with decreasing similarity,
then causing less reliable predictions.

For CoMSIA, this analysis produces similar results:
PLS models with more than 48 compounds in the
training data set lead to significant cross-validated r2
values between 0.4 and 0.55, while predictive r?2 values
between 0.69 and 0.84 are obtained with one exception
(Figure 6B), counting for significant and stable CoOMSIA
models, which allow one to predict biological activities
for structurally similar candidates.

A more rigorous model validation for 3D-QSAR is the
prediction of an external set. As no additional active
compounds were available at the time of this study, the
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Figure 6. Validation and predictivity assessment of NOS-I
3D-QSAR models. Several smaller training sets were designed
using maximum dissimilarity methods. Comparison of cross-
validated, conventional, and predictive r? values for individual
PLS models for a particular training set on the y-axis vs
training set size using (A) CoMFA or (B) CoOMSIA as descriptor
for PLS.

entire data set was split into a training and test data
set by selecting 50 training compounds using statistical
design techniques as described above. The test set
encompasses 15 compounds from Table 1. 007, 027,
028, 149, 185, 225, 261, 301, 306, 310, 313, 317, 329,
330, and 333. From the previous studies, it is assumed
that the remaining training set captures the chemical
diversity of the investigated inhibitors. Subsequently,
3D-QSAR models using CoMFA and CoMSIA were
derived, statistically validated, and employed for pri-
oritization of 15 candidates in the test set. Usinga 2 A
grid spacing, a CoMFA model with an r?(cv) value of
0.615 for four relevant PLS components and a conven-
tional r? of 0.920 were obtained. The contribution of
steric and electrostatic field descriptors to the overall
variance and the chemical interpretation of the model
in terms of 3D contour visualization and interpretation
is very similar to the full COMFA model C3 reported
above. Similar agreement is observed for the corre-
sponding CoMSIA model with 50 compounds, 2 A grid
spacing, an r2(cv) value of 0.436 for three relevant PLS
components, and a conventional r? of 0.841. To be
consistent with the original COMFA and CoMSIA mod-
els, a full validation of both training set models was
carried out. The randomization of biological activities
led to mean r2(cv) value for 100 runs of —0.185 for
CoMFA (SD, 0.148) and —0.202 for CoMSIA (SD, 0.180),
indicating that both PLS models are significantly better
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than random models based on the same alignment.
Similar results were obtained after progressive scram-
bling®® to test both PLS models’ stability against small
perturbations in the y-block (no data given). Addition-
ally, 100 PLS analyses using two and five randomly
chosen cross-validation groups were done, resulting in
mean r2(cv) values of 0.385 (two cross-validation groups;
SD, 0.124) and 0.545 (five cross-validation groups; SD,
0.050) for CoMFA and 0.266 (two cross-validation
groups; SD, 0.109) and 0.370 (five cross-validation
groups; SD, 0.067) for CoMSIA, respectively. These
derived mean r2(cv) values count for stable and signifi-
cant PLS models, which then were used for prediction
of the external test set. Subsequent predictions for all
15 test set compounds resulted in high predictive r2
values of 0.812 for COMFA and 0.688 for CoMSIA. The
corresponding predictive r? value for COMSIA is found
to be only slightly lower than observed for CoOMFA.
Hence, this use of a designed test set provides a
definitive evaluation of the high predictivity of both final
3D-QSAR models used for chemical interpretation.

In addition, the quality of both CoOMFA and CoMSIA
models was assessed with respect to force field param-
etrizations, the ligand conformation, and alignment
perturbations around the best alignment-based PLS
models. The effect of compound alignment relative to
the grid position within the predefined region definition
file was evaluated by consistently moving all compounds
of the final PLS model C3 in increments of 0.5 A in all
three dimensions x, y, and z. In this study, the relative
alignment is not changed, but the absolute orientation
with respect to the grid is changed. The obtained r2(cv)
values for each orientation based on CoMFA descriptors
range from 0.568 to 0.698 (mean r2(cv), 0.622; SD, 0.04)
for four component PLS models, suggesting only a minor
dependence of the final model on the absolute orienta-
tion of the grid box. No dependency of the relative
alignment to the grid is found for CoMSIA, as ex-
pected.*%71 The effect of different choices of the origin
of the grid for CoOMFA was investigated using 15 atom
types in addition to carbon C3 as probe atoms with a 2
A grid spacing. The r?(cv) values for each probe atom
range from 0.674 to 0.698 for four components PLS
models with C3 and other carbon-based atom types
showing the highest r?(cv) values, showing only a slight
dependence on the chosen probe (mean r2(cv), 0.682; SD,
0.01).

To evaluate the dependency of the final models from
the relative alignment and chosen conformer for PLS,
the following approach was applied. First, the influence
of alignment differences on the predictive ability of the
models was evaluated by systematically translating one
molecule at a time in x, y, or z directions in 10 steps
between —0.5 and 0.5 A. Each molecule was subjected
once to this study. Each new orientation was used for
prediction of biological activity from (i) the original
CoMFA model and (ii) a new CoMFA model excluding
this particular molecule toward a leave-one-out cross-
validation procedure. All predictions were compared to
experimental activities, the predicted activity variations
plus residuals were averaged to provide a measure of
how perturbations in the relative alignment affect the
predictive power of the PLS models (Table S5, Support-
ing Information). The entry Translation in Table S5
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summarizes these data for predictions with the original
CoMFA model, while Translation CV refers to predic-
tions based on the cross-validation approach.

Similar studies were undertaken with systematically
generated conformations for each molecule at a time.
The program FlexS7? was used to automatically super-
impose each candidate molecule onto the most similar
compound in the remaining data set, and the top 30
superposition solutions resembling the general shape
and key interactions were analyzed. Each of these
conformations was used for affinity predictions using
the original model (entry FlexS in Table S5) and the
cross-validation strategy with a PLS submodel exclud-
ing this molecule (FlexS CV in Table S5). In addition,
the FlexS-generated conformations were (i) minimized
prior to prediction (FlexS EM and FlexS EM CV in
Table S5) or (ii) minimized and matched to the common
bicyclic core using rms fitting (FlexS EM Match and
FlexS EM Match CV in Table S5). The averaged
residuals for compound translation with and without
cross-validation are lower (0.143 without and 0.221 with
cross-validation) than those derived from different
conformers generated using the different protocols
(0.267—-0.332), while those values are comparable to the
standard deviations of the original CoMFA models
(Table S1, 0.291—-0.378 for models Al to C4). These data
provide clear insight into the stability of the COMFA
models with respect to the alignment and conformation.
While minor perturbations clearly influence affinity
predictions, this is within the error for the derived cross-
validated PLS models, thus supporting stable models
with respect to parametrization and underlying as-
sumptions.

To assess the influence of conformational energy
upon building the alignment prior to PLS statistical
analysis, each compound from model C3 was extensively
minimized. The conformational energy differences per
compound were included into additional PLS models,
namely, the total energy plus individual force field terms
(bond stretching, angle bending, torsional, van der
Waals, and electrostatic energy terms**43). A mean
value of 17.5 kcal/mol for the total energy difference was
computed (SD, 19.2), while for individual terms mean
values were obtained as follows: bond stretching, 1.24
(SD, 2.08); angle bending, 5.06 (8.05); torsional, 2.42
(5.62); van der Waals, 5.71 (7.70); and electrostatic
energy, —0.01 (0.80). However, no energy term alone,
in combination with CoMFA descriptors or COMFA plus
energy-derived descriptor terms led to models with
improved predictivity (no data given). In addition, 30
molecular descriptors including surface-derived terms,
functional group counts, PM3 ionization potential, and
electron affinity, globularity, polarizability, free energy
of solvation in different solvents (water, octanol, hexa-
decane), octanol/water partition coefficient, and solubil-
ity were computed using the program QikProp,”® while
again, none of these terms could significantly improve
the final CoMFA model, when using it in combination
with CoMFA fields (no data given). All validation
studies clearly demonstrate the predictive power of the
final CoOMFA model and its stability with respect to
factors including parametrization, ligand conformation,
strain energy, and absolute alignment of individual
molecules.
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Figure 7. Contour maps for COMFA analysis C3 in combination with the inhibitor 185 (1Cso 6 «M). (A) Steric SD*Coeff contour
map: green contours (>85% contribution) indicate sterically favored regions, and yellow contours (<15% contribution) indicate
disfavored areas. (B) Same as A with NOS-I binding site. (C) Electrostatic SD*Coeff contour map: blue contours (>85% contribution)
refer to regions where negatively charged substituents are disfavorable, and red contours (<15% contribution) indicate regions
where negatively charged substituents are favorable. (D) Same as C with NOS-I binding site.

3.5. Chemical Interpretation of the QSAR
Models and Comparison to Protein Topology. On
the basis of alignment consistency and validation for
CoMFA and CoMSIA, the PLS analysis C3 was selected
for discussion, while analyses A4 and B4 both led to
similar chemical interpretation. The steric and electro-
static SD*Coeff CoMFA fields from analysis C3 are
displayed as contour maps in Figure 7 with the potent
inhibitor 185 having a phenyl substituent attached at
C6 to the 4-amino-5,6,7,8-tetrahydropteridine scaffold
(ICs0 = 6 uM). Corresponding plots for models A4 and
B4 are given in the Supporting Information, respec-
tively. For Figure 7B,D, selected binding site residues
from the NOS-I homology model are shown in addition.
On the upper panel, the steric field contributions
correlated with biological activity are shown. Green
contours (>85% contribution) indicate those regions
where steric bulk is favorable for new inhibitors, while
yellow contours (<15% contribution) highlight regions
that are detrimental for biological activity. A similar
analysis is done for the electrostatic SD*Coeff field
(Figure 7, lower panel). Blue contours (>85% contribu-
tion) refer to regions in space where an increase of
positive charge (or a decrease of negative charge) is
favored for new ligands to enhance potency, while red
contours (<15% contribution) indicate those regions
where an increase of negative charge is favorable for

higher biological activity. Although 3D-QSAR results
were derived taking only ligand information into ac-
count, the PLS contour maps are discussed with the
binding site topology from the NOS-1 model to show
consistency with steric, electrostatic, and hydrophobic
requirements.

Consistently, one large sterically favorable region is
present in agreement with requirements of the pterin-
binding site. One green contour region at the phenyl
ring attached to C6 is pointing to a pocket formed
by residues from the first and second NOS dimer:
Val(Met)106, TrpB076, TrpB447, HisB463, and GluB465.
The NOS-I11 residue numbering is used for the following
discussion; differences for NOS-I are indicated in brack-
ets. This subsite is not occupied by any ligand atom in
the 32/NOS-I111 complex, while CoOMFA points out the
importance of this region to achieve ligand complemen-
tarity for reasonable binding affinities. Several bulky,
hydrophobic substituents attached to C6 of the central
scaffold improve binding affinity. The inspection of, for
example, the 4-oxo series (Table 1la) reveals a clear
correlation of steric bulk with binding, exemplified by
inhibitors 342 (thiophene, 29 uM), 261 (phenyl, 26 uM),
and 341 (naphthyl, 8 uM). In the natural substrate H;-
Bip, this pocket is occupied by the dihydroxypropyl
chain. Especially, the visual inspection of PLS models
B4 (Supporting Information) and C3 (Figure 8) indicates
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Figure 8. Contour maps from CoMSIA analyses for model C3 in combination with inhibitor 185 (ICso 6 uM). (A) Steric SD*Coeff
contour map: green contours (>85% contribution) refer to sterically favored regions, and yellow contours (<15% contribution)
indicate disfavored areas. (B) Same as A with NOS-I binding site. (C) Electrostatic SD*Coeff contour map: blue contours
(>85% contribution) refer to regions where negatively charged substituents are disfavorable, and red contours (<15% contribution)
indicate regions where negatively charged substituents are favorable. (D) Same as C with NOS-I binding site. (E) Hydrophobic
SD*Coeff contour map: cyan contours (>85% contribution) refer to regions where hydrophilic substituents are favorable, and
orange contours (<15% contribution) indicate regions where hydrophobic substituents are favorable. (F) Same as E with NOS-I

binding site.

not only the favorable but also the detailed unfavorable
interactions indicating the size of this subsite. Similar
information is present in all models at lower contour
levels. Val106 is replaced by Met in NOS-1 and NOS-11
adopting a similar position in the NOS-11 X-ray struc-
ture and the NOS-I homology model. When inspecting
X-ray crystal structures of H4Bip/NOS complexes,”?® it
is obvious that the bulkier Val106 side chain makes a
tighter contact with the pterin atom N5 than the

corresponding Met residue. This region imposes differ-
ent steric constraints on diverse inhibitors and thus
provides possibilities to gain isoform selectivity. A small
number of differing residues was sufficient in other
examples to achieve isoform selectivities.”

A yellow contour close to the tetrahydropteridine C7
shows that bulky substitution affects activity in a
negative way, which is in accord with NOS binding site
constraints due to Serl04 and TrpB447. Although a
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phenyl ring at C7 is tolerated, it reduces activity, when
comparing inhibitors 185 and 186. However, larger
substituents are not tolerated.

Yellow contours left of the 2-amino group and N3
reveal that an unsubstituted 2-amino group has optimal
steric requirements to interact with the NOS protein
binding pocket including the heme carboxylates. As the
5,6,7,8-tetrahydropteridine is hydrogen-bonded to one
heme carboxylate by direct interactions and via struc-
turally conserved water, bulky substitution in this
region will significantly affect the ability to undergo this
interaction. The yellow contour close to N3 is directly
superimposed with one of the heme carboxylates. The
2-amino group interacts via solvent with the heme
carboxylate and the backbone carbonyl of Trp449. These
contours further indicate that replacement of any
structural water from the hydrogen bond interactions
will decrease biological affinity.

Another unfavorable region is located close to the
tetrahydropteridine C4 substituent due to constraints
from the Arg367 side chain plus the narrow entrance
into this binding site. Arg367 is conserved in all NOS
isoforms. In the 185 X-ray structure, the guanidine is
directed toward the inhibitor 4-amino group, although
not providing an optimal interaction geometry. In
contrast, the 32 carbonyl oxygen is interacting with this
side chain. Only those 4-amino substituents are toler-
ated, which optimally fill the narrow entrance into the
H4Bip binding site by one or two benzylic groups (303,
305, and 306). This H4Bip entrance region is occupied
by a glycerol molecule in the NOS-I11 structure, while
it might be replaced by solvent in the absence of
glycerol.® When substituting the 4-amino group by a
piperidine or morpholine ring (compounds 311, 313,
315, and 317), the biological activity decreases signifi-
cantly, as more steric bulk is located at the narrow Hs-
Bip site entrance. However, the potent 4-amino inhibi-
tors with bulky dibenzyl substitutions at N4 (Table 1f,
303, 305, and 306) are in agreement with CoMFA steric
field results, as two smaller green contours above the
yellow contour at N4 and below N5 point to favorable
steric interactions with the protein, while it is obvious
that the interaction at both favorable regions along with
filling additional space between Met106, TrpB076, and
Trp449 resulted in increased binding affinity, e.g., for
the lipophilic inhibitor 306 (2 «M) as compared to 246
with a less demanding N4 dimethyl substitution (75 uM)
and 311 with a morpholine (82 uM).

Inspection of COMSIA steric SD*Coeff contour maps
(Figure 8) for the same model C3 shows a high cor-
respondence to CoMFA, although the steric field ex-
plains only 21% of the overall variance. The electrostatic
field accounts for 30% of the overall variance, while the
main part of 49% is due to hydrophobic interactions,
which are only included in CoMSIA. For all other
CoMSIA models, those contributions are similar. One
advantage of CoMSIA is that entropic contributions,
which cannot be completely treated using Lennard—
Jones and Coulombic fields, are modeled using hydro-
phobic similarity index fields. The steric SD*Coeff
contour maps point to favorable ligand regions (green
>85% contribution), indicating size and shape of sub-
stituents binding into the H4Bip dihydroxypropyl sub-
site. Sterically unfavorable regions at C4, the 2-amino
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group, and the region at C7 are indicated by yellow
contours (<15% contribution). These contours are com-
pact and centered on the ligand atoms, while COMFA
regions highlight complementary features of the recep-
tor site.

The electrostatic SD*Coeff contour maps are also in
agreement for CoMFA (Figure 7) and CoMSIA (Figure
8) for individual alignments, while small differences for
different alignments are present. Blue contours (>85%
contribution) represent regions where more positive
charge or a reduction of negative charge is favorable to
enhance biological potency, while red contours (<15%
contribution) indicate regions where more negative
charge is favored. One blue contour region is located in
the binding site entrance region above N5, suggesting
that more positive electrostatic potential in this region
enhances ligand binding. The side chains of Val(Met)-
106 and Arg367 are directed toward this entrance, while
the latter guanidine is found to undergo a water-
mediated interaction with N5 in X-ray structures of
related isoforms. This region explains affinity differ-
ences between the reduced and the aromatic scaffold,
e.g., for 4-oxo, 6-phenyl derivatives 187 (reduced 7.3 uM)
and 261 (aromatic 26 uM). For a detailed comparison
of both similar molecules, their surrounding electro-
static field is shown in Figure S4 (Supporting Informa-
tion), revealing that positive charge above N5 for the
water-mediated interaction is only present in 187 (left).

A second blue contour is located in the region close
to C7, pointing toward the face of the aromatic ring of
PheB462. A red contour region is located in the H4Bip
dihydroxypropyl binding pocket close to C6, suggesting
that electron-rich aromatic systems are favored in this
pocket. Another red contour is located above the C4
substituents at the binding site entrance, suggesting the
favorable effect of increased negative charge in this
region, mainly to establish a water-mediated hydrogen
bond to one of the heme propionates.

To estimate entropic contributions to ligand binding,
hydrophobic similarity index fields were analyzed.
Regions with favorable hydrophilicity are indicated by
cyan contours in Figure 8E (>85% contribution) cen-
tered at C4, N5, and C6 of the 5,6,7,8-tetrahydropteri-
dine. In contrast, the pocket accommodating the C6
phenyl substituent is filled by an orange region (<15%
contribution), showing an area for preferred hydrophobic
interactions, which agrees to the amino acid properties
forming this part of the H4Bip binding site. Hence,
increasing polarity at the scaffold, while increasing
hydrophobic interactions in this subpocket, has a posi-
tive effect on inhibitor binding.

Inspecting all contour regions from model C3 (and A4
and B4, Supporting Information), the ligand binding
modes from literature X-ray data could be confirmed.
Hence, the binding mode of all other than the two
reference compounds 185 and 32 is validated using 3D-
QSAR models; their complementarity to the receptor
topology is obvious from inspection of Figure 7B,D for
CoMFA and 7B,D,F for COMSIA with detailed protein—
ligand interaction requirements for the NOS-I binding
site. In addition, COMFA steric and electrostatic SD*Coeff
contour maps are shown in combination with 185 and
the Connolly surface generated using the NOS-1 H4Bip
binding site. Some parts in the foreground were cut to
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Figure 9. CoMFA contour maps for analysis C3 in combination with 185 and the NOS-I binding site Connolly surface. Some
regions are cut to allow for a better view into the binding site cavity. (A) Steric SD*Coeff contour map. (B) Electrostatic SD*Coeff
contour map. For details, see Figure 7.

allow for a better view into this cavity and show steric
and electrostatic complementarity. Those figures reveal
that favored regions show a good fit to the H4Bip binding
site, while a similar complementarity is observed for
electrostatic and hydrophobic interactions. Hence, the
analysis of 3D-QSAR results led to a clear and consis-
tent picture in close agreement with the protein topology
for the NOS-I homology model and the X-ray structure
information for NOS-11 and NOS-I11, thus allowing for
a design of novel NOS-I inhibitors combined with
accurate affinity predictions (Figure 9).

3.6. NOS-I Inhibitor Isoform Selectivity. The
design of isoform selective NOS inhibitors requires a
combined interpretation of X-ray structures with em-
phasis on differing binding site residues and a series
of inhibitors with modulated chemical functionalities.
The structural comparison of experimental and modeled
H4Bip binding sites for NOS isoforms reveals two
major differences, namely, the replacement of NOS-I111
Val106 against Met for NOS-11 and NOS-1 and Alal48
in NOS-I111 replaced by lIle or Val in NOS-11 and NOS-I,
respectively. Both alterations offer the design of selec-
tive ligands toward only one isoform using the scaffolds
summarized in Table 1. Testing the most active NOS-I
inhibitors against other NOS isoforms revealed some
remarkably selective inhibitors toward NOS-1. One of
the most selective compounds from the 4-oxo series is
183 (Table 1a) with 1Csg values of 44.0, 374.2, and 208.6
uM for NOS-I/11/111, respectively. For the 4-amino series,
substitutions at N4 in combination with aromatic sub-
stituents at C6 both directed toward the binding site
region encompassing the Vall06 side chain reveal a
favorable selectivity profile for NOS-I, as exemplified
by compound 334 (Table 1j) with 5.0 uM as compared
to 214.2 and 31.7 uM for NOS-II and NOS-I111, respec-
tively. Those compounds have appropriate substitutions
at the pteridine 4- and 6-positions directed toward
Val106 in NOS-I. This valine side chain is bulkier than
Met and involved in contact with preferrably hydropho-
bic substituents at the pteridine 4- or 5-positions in
NOS-11 and NOS-I1I. Its decreased flexibility could also
positively affect protein—ligand interactions.
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Thus, this region imposes steric constraints in com-
bination with hydrophobic interactions and might lead
to selectivity by adding certain substituents at the N5
and C6 positions of the pteridine scaffold as well as
substituting N4 in the 4-amino series. Further details
including isoform SAR data and interpretation in struc-
tural terms will be given elsewhere.

4. Conclusion

The present study was focused on developing and
validating predictive 3D-QSAR models for 65 inhibitors
of human neuronal NOS (NOS-I1). Different alignment
rules have been used and refined using iterative re-
alignment. An improvement of the statistical quality of
the resulting models was achieved by a rigid field fit to
minimize steric and electrostatic field differences of
molecules to the corresponding average field. This
procedure was able to increase the internal consistency
and predictivity of all 3D-QSAR models, as it was shown
by application of validation studies for each resulting
model. Finally, one model was selected from each series
for chemical interpretation leading to similar results.
Those best models allow us to use a consensus model
prediction strategy for designing novel NOS-I inhibitors.
The preferred model C3 was selected by analysis of 3D-
QSAR validation results, especially from various cross-
validation strategies and progressive scrambling. The
chemical interpretation of this model in terms of in-
specting the steric and electrostatic contour maps
reveals a good correspondence to topological features of
the NOS—H,Bip binding site. Thus, a detailed picture
of requirements for NOS-I inhibition emerges from this
study, combining 3D-QSAR, X-ray structure data, and
homology modeling toward a better understanding of
protein—ligand interactions.

5. Experimental Section

5.1. Chemistry. Thin-layer chromatography (TLC): pre-
coated silica gel thin-layer sheets F 1500 LS 254 and precoated
cellulose sheets F1440LS 254 were from Schleicher and Schull.
Flash chromatography (FC): silica gel (Baker, 30—60 um),
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0.3—0.4 bar. UV/vis: Perkin-Elmer, Lambda 15; Amax in
nm (log €). *H nuclear magnetic resonance (NMR): Bruker
AC-250 and WM-250; ¢ (ppm) relative to dimethyl sulfoxide
(DMSO0)-ds.

The synthesis of compounds 159, 179, 183, and 215 is
described in ref 75; the synthesis of 200 and 201 is described
in ref 76; the synthesis of 199 is described in ref 77; and the
synthesis of other compounds not described here is given in
refs 35 and 36.

5-(4-Azidobenzoyl)-6-(4-azidobenzoyloxymethyl)-5,6,7,8-
tetrahydropterin (150). A suspension of 6-hydroxymethyl-
5,6,7,8-tetrahydropterin®® (0.2 g, 0.74 mmol) in dry pyridine
(10 mL) was treated under N, atmosphere with 4,4'-azidoben-
zoic anhydride (0.92 g, 3 mmol) with stirring at room temper-
ature for 28 h. The reaction solution was evaporated to dryness
and coevaporated three times with toluene, and then, the
residue was treated with MeOH in an ultrasound bath. The
solid was filtered off, washed with MeOH and ether, and dried
in high vacuum at 40 °C to give 0.183 g (51%) of yellowish
powder; mp >295 °C (dec). UV (MeOH): 212 (4.70), 271 (4.64),
328 (3.95). *H NMR (DMSO-dg): 9.74 (bs, 1 H, H—N(3)); 8.00
(d, 2 H, ph); 7.48 (d, 2 H, ph); 7.25 (d, 2 H, ph); 7.01 (d, 3 H,
ph, H—N(8)); 6.17 (bs, 2 H, NH>); 5.00 (bs, 1 H, H—C(6)); 4.20
(m, 2 H, CHzO), 3.52 (m, 2 H, H—C(7)) Anal. (021H17N1104 X
0.5H;0) C, H, N.

N2-Methyl-5,6,7,8-tetrahydropterin Dihydrochloride
(189). N2-methylpterin (0.531 g, 3 mmol) was dissolved in
trifluoroacetic acid (25 mL), the PtO, (0.1 g) was added as a
catalyst, and the mixture was reduced under hydrogen atmo-
sphere in a shaking apparatus for 12 h. The catalyst was
filtered off, and the filtrate was evaporated to dryness. The
residue was treated with methanolic HCI (12%, 20 mL) under
stirring. The resulting precipitate was collected, washed, with
MeOH, and dried in a vacuum desiccator over KOH to give
0.55 g (84%) of a colorless crystal powder; mp 248—250 °C.
UV (pH 0): 266 (4.13). Anal. (C;H1:NsO x 2HCI x H,0) C, H, N.

2-Amino-4-n-pentyloxy-6-[(2-phenyl)-1,2-dibromoethen-
yl]pteridine (265). A solution of 2-amino-4-n-pentyloxy-6-
phenylethinylpteridine® (0.1 g, 0.3 mmol) in CHCI; (3 mL) was
heated to 40 °C. Then, a solution of bromine in CHCI; (1%,
0.3 mL) was added dropwise. After it was stirred for 3 h, the
solution was evaporated, and the residue was dissolved in a
small amount of CHCI; and purified by silica gel chromatog-
raphy with CHCI3. The main fraction was evaporated, and the
resulting syrup was crystallized from n-hexane (3 mL)/CHCI;
(2 mL) to give 0.1 g (68%) of yellow needles; mp 182—-183 °C.
Anal. (ClngoBr2N50) C, H, N.

2-Amino-4-n-pentyloxy-6-phenacetylthiopteridine (270).
To a solution of 2-amino-4-n-pentyloxy-6(5H)pteridinethione™
(0.1 g, 0.38 mmol) in CHCI3; (20 mL), triethylamine (60 mL)
and phenacetylbromide (76 mg) in CHCI; (10 mL) were added.
The solution was stirred for 3.5 h at room temperature and
evaporated. The residue was dissolved in a small amount of
CHCI; and purified on a preparative silica gel plate (40 cm x
200.2 cm) with CHCI3/MeOH (4:1). The main band was cut
out, eluted, and evaporated, and the solid was recrystallized
from EtOH (10 mL) to give 90 mg (63%) of yellow crystals;
mp 190—192 °C. UV (MeOH): 244 (4.44), 285 (4.34), 397 (3.88).
H NMR (CDClg): 8.72 (s, 1 H, H—C(7)); 8.10 (m, 2 H, ph);
7.55 (m, 3 H, ph); 5.28 (bs, 2 H, NH,); 4.76 (s, 2 H, CH,S);
4.35 (t, 2 H, OCHy); 1.62 (m, 2 H, CHy); 1.30 (m, 4 H, CH>-
CHz); 0.87 (t, 3 H, CH3) Anal. (C19H21N5028) C, H, N.

2-Amino-4-dibenzylamino-6-(3,4-dimethoxyphenyl)-
pteridine (306). A solution of 3,4-dimethoxyphenylglyoxal-
monoxime (0.42 g, 2.84 mmol) in MeOH (10 mL) was added
dropwise to a boiling solution of 2,5,6-triamino-4-dibenzyl-
aminopyrimidine dihydrochloride®® (0.78 g, 1.9 mmol) in
MeOH (15 mL) and then heated under reflux for 3 h. After
the solution was cooled, concentrated NH; was added to pH
9—10 and the resulting precipitate was collected, washed with
H,0, and dried. Recrystallization from DMF/H,O gave 0.60 g
(65%) of a yellow crystal powder; mp 200—-201 °C. UV
(MeOH): 209 (4.63), 253 (4.07), 295 (4.40), 315 (4.31), 409
(409) Anal. (ngHzeNeOz X 05H20) C, H, N.
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2-Amino-4-piperidino-6-(3,4-dimethoxyphenyl)pteri-
dine (318). A solution of 3,4-dimethoxyphenylglyoxalmon-
oxime (1.78 g, 8.5 mmol) in MeOH (20 mL) was added dropwise
to a boiling solution of 2,5,6-triamino-4-piperidinopyrimidine
dihydrochloride® (1.6 g, 5.7 mmol) in MeOH (30 mL) and
heated under reflux for 3 h. After the solution was cooled,
concentrated NH; was added to pH 9—10, and the resulting
precipitate was collected, washed with H,O, and dried. Re-
crystallization from DMF/H,0 gave 1.25 g (56%) of a yellow
crystal powder; mp 238—241 °C. UV (MeOH): 215 (4.57), 241
(4.27), 295 (4.44), 320 (4.13), 400 (4.04). Anal. (C19H22NgO, x
1.5H,0) C, H, N.
2-Amino-6-(4-chlorophenyl)-4-piperidino-5,6,7,8-tetra-
hydropteridine (328). A solution of 2-amino-6-(4-chloro-
phenyl)-4-piperidinopteridine®® (2.0 g, 5.3 mmol) in trifluoro-
acetic acid (20 mL) was shaken under H, atmosphere with
PtO; (0.1 g) for 4 h until H, uptake was stopped. After filtration
of the catalyst, the filtrate was evaporated, and the solid was
treated with methanolic HCI (10%, 15 mL) for several hours.
After it was evaporated, the residue was coevaporated with
EtOH and then stirred in ether, filtered, and dried in a vacuum
desiccator to give 1.8 g (72%) as a colorless powder; mp >170
°C (dec). uv (60% HzSO4): 221 (431), 297 (414) Anal. (C17H21-
CINg x 3HCI x H;0) C, H, N.
2-Amino-6-(4-methoxyphenyl)-4-piperidino-5,6,7,8-tetra-
hydropteridine (329). A solution of 2-amino-6-(4-methoxy-
phenyl)-4-piperidinopteridine®® (0.7 g, 2 mmol) in trifluoro-
acetic acid (15 mL) was shaken under H; atmosphere with
PtO, (0.1 g) for 24 h until H, uptake was stopped. It was
filtered from the catalyst, the filtrate was evaporated, and the
resulting solid was treated with methanolic HCL (10%, 15 mL)
by stirring for several hours. After it was evaporated, the
residue was coevaporated with EtOH and stirred in ether,
filtered, and dried in a vacuum desiccator to give 0.7 g (74%)
as a colorless powder; mp 218—220 °C (dec). UV (60% H,SO.,):
223 (4.40), 300 (4.34). Anal. (C17H24N6O x 3HCI x H,0) C, H, N.
2-Amino-6-phenyl-4-piperidino-5,6,7,8-tetrahydro-
pteridine (330). A solution of 2-amino-6-phenyl-4-piperidino-
pteridine®® (0.6 g, 1.75 mmol) in trifluoroacetic acid (15 mL)
was shaken under H, atmosphere with PtO, (0.1 g) for 4 h
until H, was uptake stopped. It was filtered from the catalyst,
the filtrate was evaporated in a vacuum, and the resulting
solid was treated with methanolic HCI (10%, 15 mL) by stirring
for several hours. After it was evaporated, the residue was
coevaporated with EtOH and stirred in ether, filtered, and
dried in a vacuum desiccator to give 0.64 g (80%) as a colorless
powder; mp 178—182 °C. UV (60% H,SO.): 229 (4.07), 299
(419) Anal. (C17H22N6 x 3HCI x Hgo) C, H, N.
2-Amino-6-(4-methoxyphenyl)-4-di-N-propylamino-
5,6,7,8-tetrahydropteridine (332). A solution of 2-amino-6-
(4-methoxyphenyl)-4-di-n-propylaminopteridine® (0.5 g, 1.35
mmol) in trifluoroacetic acid (15 mL) was shaken under H;
atmosphere with PtO, (0.1 g) for 4 h until H, uptake was
stopped. It was filtered from the catalyst, the filtrate was
evaporated, and the resulting solid was treated with metha-
nolic HCI (10%, 15 mL) by stirring for several hours. After it
was evaporated, the residue was coevaporated with EtOH and
stirred in ether, filtered, and dried in a vacuum desiccator to
give 0.58 g (95%) as a colorless powder; mp >150 °C (dec). UV
(60% H,S04): 224 (4.25), 300 (4.30). Anal. (C19H2sNO x 2HCI
x 1.5 H,0) C, H, N.
2-Amino-6-(4-chlorophenyl)-4-diethylamino-5,6,7,8-tetra-
hydropteridine (333). A solution of 2-amino-6-(4-chloro-
phenyl)-4-diethylaminopteridine®® (0.5 g, 1.52 mmol) in tri-
fluoroacetic acid (15 mL) was shaken under H, atmosphere
with PtO; (0.1 g) for 10 h until H, uptake was stopped. It was
filtered from the catalyst, the filtrate was evaporated, and the
resulting solid was treated with methanolic HCI (10%, 15 mL)
by stirring for several hours. After it was evaporated, the
residue was coevaporated with EtOH and then stirred in ether,
filtered, and dried in a vacuum desiccator to give 0.53 g (84%)
as a colorless powder; mp >220 °C (dec). UV (60% H,SO,): 220
(4.26), 298 (4.29). Anal. (C16H21CINg x 2HC1 x 0.5 Hz0) C,
N.
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2-Amino-6-(4-chlorophenyl)-4-cyclohexylmethylamino-
5,6,7,8-tetrahydropteridine (334). A solution of 2-amino-6-
(4-chlorophenyl)-4-dibenzylaminopteridine3® (0.5 g, 1.06 mmol)
in trifluoroacetic acid (15 mL) was shaken under H, atmo-
sphere with PtO; (0.1 g) for 24 h until H, uptake was stopped.
It was filtered from the catalyst, the filtrate was evaporated,
and the resulting solid was treated with methanolic HCI (10%,
15 mL) by stirring for several hours. After it was evaporated,
the residue was coevaporated with EtOH and stirred in ether,
filtered, and dried in a vacuum desiccator to give 0.36 g
(73%) as a colorless powder; mp >180 °C (dec). UV (60% H-
SO4): 218 (414), 283 (422) Anal. (C19H25C|N6 x 2HCI x Hzo)
C, H, N.

5.2. Biology. Materials. L-[2,3,4,5-°H]Arginine hydrochlo-
ride (>2.81 Thq mmol™') was purchased from Amersham
(Braunschweig, Germany); H4Bip was purchased from Dr. B.
Schircks Laboratories (Jona, Switzerland); S-nicotinamide
adenine dinucleotide phosphate tetrasodium salt tetrahydrate
(NADPH) was purchased from Applichem GmbH (Darmstadt,
Germany); flavin adenine dinucleotide (FAD), flavin mono-
nucleotide (FMN), and reduced glutathione (GSH) were pur-
chased from Boehringer-Mannheim (Mannheim, Germany);
and l-arginine hydrochloride and phosphodiesterase 3',5'-cyclic
nucleotide activator (calmodulin, CaM) were purchased from
Sigma Chemicals (Deisenhofen, Germany). All other chemicals
were of the highest purity available and either from Merck
AG (Darmstad, Germany) or Sigma Chemicals. Water was
deionized to 18 MQ cm (Milli-Q; Millipore, Eschborn, Ger-
many) and deoxygenated by gassing with argon.

Enzyme Activity. Native NOS-I (neuronal NOS) was
isolated and purified from porcine brain cerebellum by am-
monium sulfate precipitation and 2',5'-ADP-sepharose affinity
chromatography using previously described methods.?*3® To
determine NOS catalytic activity, the Ca?/calmodulin-de-
pendent conversion of radiolabeled substrate [*H]L-arginine
to [®H]L-citrulline was measured during a standard incubation
of 15 min.%" NOS-I was incubated at 37 °C in a total assay
volume of 100 uL consisting of 50 nM CaM, 1 mM CacCly,
5 uM FAD, 10 uM FMN, 250 uM 3-[(3-cholamidopropyl)-
dimethylammonio]-2-hydroxy-1-propanesulfonat (Chapso), 50
mM triethanolamine (TEA) buffer (pH 7.2), 1 mM NADPH, 7
mM GSH, and 50 uM r-arginine + [2,3,4,5-*H]L-arginine. The
reaction was stopped by adding ice-cold acetate buffer (pH 5.5).
The [®*H]c-citrulline formed was separated by cation exchange
chromatography, and the amount of radioactivity was deter-
mined by liquid scintillation counting. Total NOS-I activity
was determined in the presence of saturating HsBip concen-
trations (2 uM)3*3579, and the effect of the antipterins was
examined at an initial inhibitor concentration of 100 M.
Concentration—response curves were constructed in the
range from 0 to 1000 M. The corresponding ICso values
were determined by nonlinear regression analysis (fitting to
sigmoidal concentration—response curves) using the Ultra-
Fit (Biosoft, Cambridge, U.K.) or Prism software (GraphPad,
San Diego, CA).

Abbreviations. H,Bip, (6R)-5,6,7,8-tetrahydro-L-biopterin;
CoMFA, comparative molecular field analysis; 1Cs value,
concentration of inhibitor required for half-maximal inhibition;
NO, nitric oxide (synonym nitrogen monoxide); NOS, nitric
oxide synthase enzyme family (EC 1.14.13.39); SAR, structure—
activity relationship; SCR, structurally conserved region.
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